If it's not what You are looking for type in the equation solver your own equation and let us solve it.
70k^2-343k+343=0
a = 70; b = -343; c = +343;
Δ = b2-4ac
Δ = -3432-4·70·343
Δ = 21609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21609}=147$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-343)-147}{2*70}=\frac{196}{140} =1+2/5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-343)+147}{2*70}=\frac{490}{140} =3+1/2 $
| 4^x-1-3.2^x-1+2=0 | | -2y^2+y=1 | | 3x+12-6x=1-4x-1 | | x+4/2-x=1/6-2x-1/3 | | 162=2x3^3 | | 9(v-8)=18 | | 5(z-7=45 | | 5x/10=90/60 | | X+2(3x-10)=3x+4 | | 1+2.7t-4.9t^2=0 | | 177=3p-6(3-6p) | | 4x-72=2/3 | | -56=8(y-6) | | 2-8v=26 | | 3(2x-2)+2(3x+4)=38 | | 3x+4+5x=44 | | 36,000+4,000x=51,000+1,500 | | P=10t-20,016 | | 55x=65(x-2) | | 2/3(p-12)=-2p-1)+7 | | 45=1/3(a)(5) | | 3=4x+13 | | 15r+38=3r | | 0=(-4.9t^2)+10t+25 | | 2(19-2m)=14 | | 4v+18=-4(7v+2)-6 | | y=-2^2−4 | | -40-2x=3(x-5) | | 4.9t^2+10t+25=0 | | -40-2x=3(x-5 | | 38-2x=6-4(7x+5) | | 10x-17/3+4=3x |